Regulatory interplay of the Sub1A and CIPK15 pathways in the regulation of α-amylase production in flooded rice plants.

نویسندگان

  • N P Kudahettige
  • C Pucciariello
  • S Parlanti
  • A Alpi
  • P Perata
چکیده

Rice (Oryza sativa L.) can successfully germinate and grow even when flooded. Rice varieties possessing the submergence 1A (Sub1A) gene display a distinct flooding-tolerant phenotype, associated with lower carbohydrate consumption and restriction of the fast-elongation phenotype typical of flooding-intolerant rice varieties. Calcineurin B-like interacting protein kinase 15 (CIPK15) was recently indicated as a key regulator of α-amylases under oxygen deprivation, linked to both rice germination and flooding tolerance in adult plants. It is still unknown whether the Sub1A- and CIPK15-mediated pathways act as complementary processes for rice survival under O(2) deprivation. In adult plants Sub1A and CIPK15 may perhaps play an antagonistic role in terms of carbohydrate consumption, with Sub1A acting as a starch degradation repressor and CIPK15 as an activator. In this study, we analysed sugar metabolism in the stem of rice plants under water submergence by selecting cultivars with different traits associated with flooding survival. The relation between the Sub1A and the CIPK15 pathways was investigated. The results show that under O(2) deprivation, the CIPK15 pathway is repressed in the tolerant, Sub1A-containing, FR13A variety. CIPK15 is likely to play a role in the up-regulation of Ramy3D in flooding-intolerant rice varieties that display fast elongation under flooding and that do not possess Sub1A.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flavonoids from Salvia chloroleuca with α-Amylsae and α-Glucosidase Inhibitory Effect

It is believed that the inhibition of carbohydrate hydrolyzing enzymes including α-amylase and α-glucosidase is one of the therapeutic approaches to decrease the postprandial glucose level after a meal, especially in the people with type 2 diabetes. Medicinal plants and their extracts are one of the main sources to find new inhibitors to the enzymes. In our study four flavonoids, namely luteoli...

متن کامل

Flavonoids from Salvia chloroleuca with α-Amylsae and α-Glucosidase Inhibitory Effect

It is believed that the inhibition of carbohydrate hydrolyzing enzymes including α-amylase and α-glucosidase is one of the therapeutic approaches to decrease the postprandial glucose level after a meal, especially in the people with type 2 diabetes. Medicinal plants and their extracts are one of the main sources to find new inhibitors to the enzymes. In our study four flavonoids, namely luteoli...

متن کامل

Interference with oxidative phosphorylation enhances anoxic expression of rice α-amylase genes through abolishing sugar regulation

Rice has the unique ability to express alpha-amylase under anoxic conditions, a feature that is critical for successful anaerobic germination and growth. Previously, anaerobic conditions were shown to up-regulate the expression of Amy3 subfamily genes (Amy3B/C, 3D, and 3E) in rice embryos. These genes are known to be feedback regulated by the hydrolytic products of starchy endosperm such as the...

متن کامل

Regulation of miR159 and miR396 mediated by Piriformospora indica confer drought tolerance in rice

Drought stress is one of the most determinative factors of agriculture and plays a major role in limiting crop productivity. This limitation is going to rising through climate changes. However, plants have their own defense systems to moderate the adverse effects of climatic conditions. MicroRNA-mediated post-transcriptional gene regulation is one of these defense mechanisms. The root endophyti...

متن کامل

Improvement of enzymatic saccharification yield in Arabidopsis thaliana by ectopic expression of the rice SUB1A-1 transcription factor

Saccharification of polysaccharides releases monosaccharides that can be used by ethanol-producing microorganisms in biofuel production. To improve plant biomass as a raw material for saccharification, factors controlling the accumulation and structure of carbohydrates must be identified. Rice SUB1A-1 is a transcription factor that represses the turnover of starch and postpones energy-consuming...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant biology

دوره 13 4  شماره 

صفحات  -

تاریخ انتشار 2011